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Dynamics of viscous penetration in percolation porous media
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We investigate the dynamics of viscous penetration in two-dimensional percolation networks at criticality
for the case in which the ratio between the viscosities of displaced and injected fluids is very large. We report
extensive numerical simulations that indicate that the scaling exponents for the breakthrough time distribution
are the same as the previously reported values computed for the case of unit viscosity ratio. Our results are
consistent with the possibility that viscous displacement through critical percolation networks constitutes a
single universality class, independent of the viscosity ratio. We also find that the distributions of mass and
breakthrough time of the invaded clusters have the same scaling form, but with different critical exponents.
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I. INTRODUCTION

The interesting physics related to the displacement p
nomenon of a viscous fluid by a less viscous one insid
porous material has been the subject of intensive researc
the past and in recent years, in particular due to its cl
connections with hydrology and oil recovery@1,2#. These
studies have been fairly successful in describing the com
geometrical features of the displacement structures in te
of statistical mechanical models, such as invasion perc
tion ~IP!, viscous fingering~VF!, and diffusion-limited ag-
gregation~DLA ! @3–6#. More recent works on this subjec
have been motivated by the rich variety of intriguing ph
nomena that the invasion process can display, such as
lanches and flux front roughening@7,8#. All these studies
unambiguously indicate that the morphological characte
tics of objects generated during the displacement proc
~e.g., the invading cluster or the penetration front! should be
strongly dependent on the physicochemical and operati
properties of the flow.

Just at the critical point, the incipient infinite percolatio
cluster@9,10# is an example of a random fractal that has be
extensively used as a convenient paradigm for real di
dered systems. An obvious advantage of using the perc
tion model is that a comprehensive set of exactly and
merically calculated critical exponents is now available
describe most of its geometrical and transport features
addition, it is well established that the electrical transport
disordered media with abroad distribution of conductance
values is dominated by those regions where the conducta
are larger than some critical value@11#. This value is the
largest conductance such that the set of conductances a
this threshold still preserves the global connectivity of t
system. In percolation terminology, this is equivalent
working with the conducting spanning cluster. Known
‘‘the critical path method,’’ this powerful approximation ha
been successfully applied@12# to estimate transport prope
ties ~e.g., permeability and electrical conductivity! of disor-
dered porous materials.

Only a few studies have been devoted to the investiga
of the displacement process through percolation porous
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e-
a
in
e

x
s

a-

-
va-

-
ss

al

n
r-
la-
-

In
n

es

ove

n
e-

dia at criticality. Murat and Aharony@13# showed by nu-
merical simulation with two-dimensional diluted percolatio
lattices that, although the clusters generated from VF
DLA have the same fractal dimension at the vicinity of t
critical point, many other geometrical differences can be
served between these two processes. In two recent stu
@14,15#, the dynamics of viscous displacement through p
colation porous media has been investigated in the limit
condition of unitary viscosity ratio,m[m2 /m151, where
m1 and m2 are the viscosities of the injected and displac
fluids, respectively. In this situation, the displacement fro
can be approximately modeled by tracer particles that foll
the streamlines of the flow. As a result, it was shown that
distributions of the shortest path and minimal traveling tim
of the tracer closely obey a proposed scalingansatz@16,17#
that can account for both the effect onL—the finite size of
the system—and onp, the bond occupancy probability.

The main purpose of the present study is to investigate
detailed dynamics of viscous penetration through tw
dimensional~2D! critical percolation networks in the limit-
ing case of a very large viscosity ratio,m→`. The organi-
zation of the paper is as follows. In Sec. II, we present
characteristics of the theoretical model and related par
eters. The results are shown and discussed in Sec. III and
concluding remarks are then presented in Sec. IV.

II. MODEL FORMULATION

The porous media is modeled here by bond percolation
a square lattice with sites that have negligible volume a
bonds that are cylindrical tubes of fixed lengthl p and radius
r p . We consider the percolation backbone generated at
critical point between two sites~‘‘wells’’ ! W1 andW2 sepa-
rated by a fixed distancer ~see Fig. 1!. As a macroscopic
boundary condition, a constant pressure dropDp5pW1
2pW2 is imposed between the injecting (W1) and extracting
wells (W2) during the dynamics. For simplicity, we consid
here the case in which capillary forces are locally negligi
in the system. This is analogous to assuming that the in
facial pressure drop between fluids is negligible at each p
@3#. In addition, the tubes connecting the sites are sufficien
©2001 The American Physical Society03-1
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long, l p@r p , to assume that the flow between nodesi and j
at the pore scale follows Hagen-Poiseuille’s law,

qi j 5
pr p

4

8m~ l p2xi j !
~pi2pj !5gi j ~pi2pj !. ~1!

Herepi is the pressure at nodei , qi j is the volumetric flow
rate between nodesi and j , gi j is the hydraulic conductanc
of the pore, andm is the viscosity of the displaced fluid. Th
local variablexi j , 0<xi j <l p , is a time-dependent lengt
that corresponds to the part of the pore that is filled with
displacing fluid during the penetration process. Mass con
vation at each node of the lattice leads to the following se
linear algebraic equations:

(
j

qi j 5(
j

gi j ~pi2pj !50 for i 51,2, . . . ,N, ~2!

whereN is the number of sites. Note that becausegi j
2150,

the pressure inside the invaded region must be everyw
equal to the pressurepW1 applied at the wellW1. In order to
simulate the dynamics of viscous invasion, we compute
local displacement in each pore at the front asDxi j

5qi j Dtmin /pr p
2 , whereDtmin is the variable time step of th

process, calculated as the minimum value among all the
terface pores, necessary for the invading fluid to reach a
node. Accordingly, we keep updating the front and recal
lating the pressure field until the displacing fluid reaches
second wellW2. At this point, we record the massMb of the
invaded cluster and the breakthrough timetb , i.e., the total
time for the invading front to move fromW1 to W2. For a
fixed value ofr, this operation is repeated for 10 000 netwo
realizations of sizeL3L, whereL5500@r . We run these
simulations for different values ofr and find that there is

FIG. 1. Pictorial representation of the viscous penetration p
cess in a typical percolation network of pores. A constant pres
dropDp is applied between the pointsW1 andW2 separated by the
distancer. At initial time, the entire network is filled with a fluid o
finite viscosity~displaced fluid!. The invading fluid of zero viscos
ity penetrates throughW1 and reachesW2 at the breakthrough time
tb . The thin lines correspond to pores filled with the displaced flu
while the thick lines are the pores filled with the invading fluid
t5tb .
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always a well-defined region where the distributions ofMb
and tb follow the scaling form@16#

P~z!5AzS z

z*
D 2gz

f S z

z*
D , ~3!

wherez denotesMb or tb , z* is the maximum of the prob-
ability distribution, the normalization constant is given b
Az;(z* )21, and the scaling function has the form@14,15#

f ~y!5exp~2azy
2fz!. ~4!

The exponentsfz anddz are related by

fz5
1

dz21
. ~5!

Note that the scaling functionf decreases sharply whenz is
smaller thanz* . The lower cutoff is due to the fact that th
massMb cannot be smaller than the mass of invading flu
filling a single straight tube of radiusr p and lengthr.

III. RESULTS AND DISCUSSION

In Figs. 2 and 3, we show the log-log plots of the dist
butionsP(Mb) andP(tb), respectively, for five different val-
ues of the well distance:r 54, 8, 16, 32, and 64. For eac
curve, we determine the characteristic sizez* as the peak of
the distribution and plotz* versus the distancer in double-
logarithmic scale. As shown in Fig. 4, the results of o
simulations indicate that bothMb* and tb* have a power-law
dependence on the distancer , z* ;r dz. The linear fit to the
data yields the exponentsdz for each distribution, namely

dM51.3160.02 ~6!

-
re

,

FIG. 2. Logarithmic plot of the distribution of mass of invade
clustersP(Mb) for different distancesr 54,8,16,32,64 between in
jection (W1) and extraction (W2) points. The inset shows the co
lapsed data obtained by rescaling the massMb with its correspond-
ing characteristic valueMb* ;r 1.31. The least-square fit to the data i
the scaling region givesgM52.0060.04.
3-2
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and

dt52.2560.03. ~7!

In particular, the exponentdM is the fractal dimension of the
invaded cluster. It has been previously estimated by Mu
and Aharony@13# using smaller system sizes, astochastic
type of invasion algorithm, and a different set of bounda
conditions to represent the source and sink of mass.
obtained valuedM51.3060.05, however, is in very good
agreement with our result. Paredes and Octavio@18# also
obtained a quite similar result for the structure of the injec

FIG. 3. Logarithmic plot of the breakthrough time distributio
P(tb) for r 54,8,16,32,64. The inset shows the collapsed data
tained by rescaling the timetb with its corresponding characteristi
valuetb* ;r 2.25. The least-square fit to the data in the scaling reg
givesgt51.5460.03.

FIG. 4. Log-log plot of the most probable values for the mass
invaded clustersMb* ~circles! and breakthrough timetb* ~squares!
versus the distancer. The straight lines are the least-square fits
the data, with the numbers indicating the slopes,dM51.3160.02
~circles! anddt52.2560.03 ~squares!.
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fluid (dM'1.37) using the invasion percolation model wi
trapping in percolating clusters.

The insets of Figs. 2 and 3 show the data collapse
tained by rescalingMb andtb to their characteristic size,Mb*
and tb* , respectively. Both distributions are consistent w
the scaling form of Eq.~3!. From the least-square fit to th
data in the scaling regions, we obtain the exponentsgM
52.0060.04 andgt51.5460.03. At this point, it is impor-
tant to recall that the breakthrough time exponents repo
in @15# for the special casem51 aredt'2.3 andgt'1.57,
computed at constant pressure. Furthermore, note that
scaling exponents of the invaded cluster massgM and dM
also coincide with the exponents for breakthrough time
ported in Ref.@15# for m51 at constant flow. In the cas
m51, the conductanceG of the system is constant over tim
and scales with the distancer asG;r 2z, with z'0.975@9#.
The breakthrough time computed at constant flowtbq coin-
cides with the cluster massM invaded by the time of the
breakthrough. The breakthrough time at constant pressu
given by tbp5tbq /G. Accordingly, tbp;r dM1z. Hence one
expects the relationshipdt5dM1z. Since the values oftbp
and tbq are strongly correlated with each other,tbp

;tbq
(dM1z)/dM , the distributions of both quantities must obe

the relationship

P~ tbp!dtbp5P~ tbq!dtbq , ~8!

from which it follows that

gt511~gM21!
dM

dM1z
'1.57. ~9!

This is in good agreement with the data obtained form
→` as well as for the data obtained in Ref.@15# for m51.
The excellent agreement between the exponents obtaine
the casesm→` andm51 seems to indicate that the proce
of viscous penetration in percolation porous media con
tutes a single class of universality.

From a practical point of view, it is important to unde
stand the relationship between the dynamical variablesMb
and tb , which in the casem→` is not so simple as in the
casem51. Here, we explain this by considering that it
possible to map the statistics over several samples into
dynamics of viscous penetration of a single but sufficien
large pore network realization. In this situation, we can
ways express the global dynamics of the system in term
the following mass balance:

dM

dt
5rGDp, ~10!

whereM is the mass of the invaded cluster at timet, r is the
density of the invading fluid, taken as constant, andG is the
overall hydraulic conductance of the pore network. At a
time t during the dynamics, the variableG can be calculated
as the conductance of the remaining pore space filled w
defending fluid. Therefore,G should be of the order of the
conductance between the most advanced site in the inva
front and the second wellW2. As shown in Fig. 1, this sim-
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ply means that the dynamics of the invasion cluster can
approximately followed as a sequence of translations in
first well W1 to pointsW18 located at the front. If we now
make use of the scaling relationG;r 2z and assume that th
remaining mass to be filled within the displaced phase
sufficiently large to obey

~Mb2M !;r dM, ~11!

it follows that

G;~Mb2M !2z/dM. ~12!

The substitution of Eq.~12! into Eq. ~10! and integration
over the entire dynamics gives the following scaling beh
ior between the breakthrough time and mass:

tb;Mb
a , ~13!

wherea5(z1dM)/dM'1.75 in two dimensions. In Fig. 5

FIG. 5. Power-law dependence oftb /tb* on Mb /Mb* for r 54
~circles!, 8 ~squares!, 16 ~diamonds!, 32 ~up triangles!, and 64
~down triangles!. Each abscissa is the average over theMb values
falling within the range of a specified logarithmic bin. The ordina
is the average over the correspondingtb values. The computed erro
bars are smaller than the symbols. The solid line with slope 1
60.04 is the least-square fit to all data sets in the scaling reg
The inset shows the power-law behavior of the intrinsic invas
dynamics in terms ofG(t)/G0 versus 12M (t)/Mb . These data
have been obtained by averaging the individual time-dependent
cess of penetration over 200, 400, 600, 800, and 1000 realiza
of 5003500 pore networks generated withr 54 ~circles!, 8
~squares!, 16 ~diamonds!, 32 ~triangles up!, and 64 ~triangles
down!, respectively.
e

-
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we show that the logarithmic dependence oftb on Mb for all
values of the distancer used in the simulations can be sati
factorily represented by a single straight line with slo
equal to 1.8060.04. A difference smaller than 3% betwee
predicted and calculateda exponents confirms the validity o
our similarity argument. For consistency, it is important
show that the basic assumption~12! used to determine the
exponenta is indeed descriptive of theintrinsic dynamics of
viscous invasion. We therefore carried out additional sim
lations where the entire penetration dynamics of the perc
tion pore space is sampled over several lattice realizatio
The results displayed in the inset of Fig. 5 show that
average dynamics of the normalized conductance,G(t)/G0,
whereG05G(0), follows a power law,

G~ t !/G0;S 12
M ~ t !

Mb
D 2b

, ~14!

with an exponent

b50.8160.03. ~15!

This numerically estimated value is also in good agreem
with the theoretical approximation~12!, which predicts

b5z/dM'0.75. ~16!

IV. CONCLUSION

In summary, we found by numerical simulations on 2
percolation networks at criticality that the scalingansatzpro-
posed in@16,17# to characterize the dynamics of viscous d
placement atm51 also holds for the case of very larg
viscosity ratio,m→`. Surprisingly, we found that the distri
bution exponentsgz anddz estimated for these two limiting
cases are statistically identical. Based on this fact, we s
gest that the two processes should belong to the same
versality class. Of course, we emphasize that this unive
behavior only applies to percolationlike porous media a
should not be generalized to the structure of other por
materials. Our results also indicate that the relevant dyna
cal exponent relating the mass of the displacing cluster
the breakthrough time can be directly obtained from pre
ously known exponents by means of a simple similarity
gument. We expect these results to be valid also for r
percolation porous media.
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